Review: M. J. Sharpe, General Theory of Markov Processes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Regenerative Process in Sharpe

Markov regenerative processes (MRGPs) constitute a more general class of stochastic processes than traditional Markov processes. Markovian dependency, the first-order dependency, is the simplest and most important dependency in stochastic processes. Past history of a Markov chain is summarized in the current state and the behavior of the system thereafter only depends on the current state. Sojo...

متن کامل

On General Perturbations of Symmetric Markov Processes

Let X be a symmetric right process, and let Z = {Zt, t ≥ 0} be a multiplicative functional of X that is the product of a Girsanov transform, a Girsanov transform under time-reversal and a continuous Feynman-Kac transform. In this paper we derive necessary and sufficient conditions for the strong L-continuity of the semigroup {Tt, t ≥ 0} given by Ttf(x) = Ex [Ztf(Xt)], expressed in terms of the ...

متن کامل

General Theory of Processes Notes

Sets subscripted with a “+” are nonnegative, and sets subscripted with a “++” are strictly positive. We write dxen := ∑ i∈N+ i+1 2n ·1[i/2n,(i+1)/2n)(x) and bxcn := ∑ i∈N+ i 2n ·1(i/2n,(i+1)/2n](x) so dxen x and bxcn x, unless x = 0, in which case bxcn = 0 for all n. We will write (Ft)0≤t≤∞ to denote a filtration. If X• is a process taking values in (E,E ), then F t = σ ({Xs ∈ A | 0 ≤ s ≤ t, A ...

متن کامل

Markov Decision Processes with General Discount Functions

In Markov Decision Processes, the discount function determines how much the reward for each point in time adds to the value of the process, and thus deeply a ects the optimal policy. Two cases of discount functions are well known and analyzed. The rst is no discounting at all, which correspond to the totaland average-reward criteria. The second case is a constant discount rate, which leads to a...

متن کامل

Transition Path Theory for Markov Jump Processes

The framework of transition path theory (TPT) is developed in the context of continuous-time Markov chains on discrete state-spaces. Under assumption of ergodicity, TPT singles out any two subsets in the state-space and analyzes the statistical properties of the associated reactive trajectories, i.e. these trajectories by which the random walker transits from one subset to another. TPT gives pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1990

ISSN: 0091-1798

DOI: 10.1214/aop/1176990652